Astronomers for the first time detect signals of light from the earliest stars ever to form in the Universe around 180 million years after the Big Bang.
The signal is a fingerprint left on background radiation by hydrogen that absorbed some of this primordial light. The evidence hints that the gas that made up the early Universe was colder than predicted. This, physicists say, is a possible sign of dark matter’s influence.
“This is the first time we’ve seen any signal from this early in the Universe, aside from the afterglow of the Big Bang,” says Judd Bowman, an astronomer at Arizona State University in Tempe who led the work, which is published in Nature on 28 February.
“Finding this minuscule signal has opened a new window on the early universe,” said Judd Bowman of Arizona State University, whose team set out to make the detection more than a decade ago. “It’s unlikely we’ll be able to see any earlier into the history of stars in our lifetime.”
“If it’s true, this is major news,” says Saleem Zaroubi, a cosmologist at the University of Groningen in the Netherlands. Other teams will need to confirm the signal but, so far, the finding seems to be robust, he says.
During the next 100m years a period known as the dark ages gravity pulled slightly denser regions of gas into clumps and eventually some collapsed inwards to form the first stars, which were massive, blue and short lived. As these stars lit up the surrounding gas, the hydrogen atoms were excited, causing them to start absorbing radiation from the Cosmic Microwave Background at a characteristic wavelength.
This led scientists to predict that the cosmic dawn must have left an imprint in the Cosmic Microwave Background radiation in the form of a dip in brightness at a specific point in the spectrum that ought, in theory, to still be perceptible today.
The signal also indicated a second milestone at 250m years after the big bang, when the early stars died and black holes, supernovae and other objects they left behind heated up the the remaining free hydrogen with x-rays.
>Juthy Saha